High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model
نویسندگان
چکیده
In this paper we develop high order positivity-preserving finite volume weighted essentially non-oscillatory (WENO) schemes for solving a hierarchical size-structured population model with nonlinear growth, mortality and reproduction rates. We carefully treat the technical complications in boundary conditions and global integration terms to ensure high order accuracy and positivity-preserving property. Comparing with the previous high order difference WENO scheme for this model, the positivity-preserving finite volume WENO scheme has a comparable computational cost and accuracy, with the added advantage in positivity-preserving and L1 stability. Numerical examples including the one for the evolution of the population of Gambusia affinis, are presented to illustrate the good performance of the scheme.
منابع مشابه
Positivity-preserving high order finite difference WENO schemes for compressible Euler equations
In [19, 20, 22], we constructed uniformly high order accurate discontinuous Galerkin (DG) which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics. The technique also applies to high order accurate finite volume schemes. In this paper, we show an extension of this framework to construct positivity-preserving high order essentially non-oscillatory (E...
متن کاملPositivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations
In this paper, we present a positivity-preserving high order finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for compressible Euler equations based on the framework for constructing uniformly high order accurate positivity-preserving discontinuous Galerkin and finite volume schemes for Euler equations proposed in [20]. The major advantages of the HWENO schemes is their...
متن کاملPositivity-preserving Finite Difference Weno Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations
In this paper, we utilize the maximum-principle-preserving flux limiting technique, originally designed for high order weighted essentially non-oscillatory (WENO) methods for scalar hyperbolic conservation laws, to develop a class of high order positivity-preserving finite difference WENO methods for the ideal magnetohydrodynamic (MHD) equations. Our schemes, under the constrained transport (CT...
متن کاملMaximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments
In an earlier study (Zhang & Shu 2010b J. Comput. Phys. 229, 3091–3120 (doi:10.1016/ j.jcp.2009.12.030), genuinely high-order accurate finite volume and discontinuous Galerkin schemes satisfying a strict maximum principle for scalar conservation laws were developed. The main advantages of such schemes are their provable high-order accuracy and their easiness for generalization to multi-dimensio...
متن کاملOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2011